Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Adv Sci (Weinh) ; : e2307835, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483032

RESUMO

Transformer-based models have revolutionized single cell RNA-seq (scRNA-seq) data analysis. However, their applicability is challenged by the complexity and scale of single-cell multi-omics data. Here a novel single-cell multi-modal/multi-task transformer (scmFormer) is proposed to fill up the existing blank of integrating single-cell proteomics with other omics data. Through systematic benchmarking, it is demonstrated that scmFormer excels in integrating large-scale single-cell multimodal data and heterogeneous multi-batch paired multi-omics data, while preserving shared information across batchs and distinct biological information. scmFormer achieves 54.5% higher average F1 score compared to the second method in transferring cell-type labels from single-cell transcriptomics to proteomics data. Using COVID-19 datasets, it is presented that scmFormer successfully integrates over 1.48 million cells on a personal computer. Moreover, it is also proved that scmFormer performs better than existing methods on generating the unmeasured modality and is well-suited for spatial multi-omic data. Thus, scmFormer is a powerful and comprehensive tool for analyzing single-cell multi-omics data.

2.
World J Surg Oncol ; 22(1): 49, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38331878

RESUMO

BACKGROUND: TMPRSS2-ERG (T2E) fusion is highly related to aggressive clinical features in prostate cancer (PC), which guides individual therapy. However, current fusion prediction tools lacked enough accuracy and biomarkers were unable to be applied to individuals across different platforms due to their quantitative nature. This study aims to identify a transcriptome signature to detect the T2E fusion status of PC at the individual level. METHODS: Based on 272 high-throughput mRNA expression profiles from the Sboner dataset, we developed a rank-based algorithm to identify a qualitative signature to detect T2E fusion in PC. The signature was validated in 1223 samples from three external datasets (Setlur, Clarissa, and TCGA). RESULTS: A signature, composed of five mRNAs coupled to ERG (five ERG-mRNA pairs, 5-ERG-mRPs), was developed to distinguish T2E fusion status in PC. 5-ERG-mRPs reached 84.56% accuracy in Sboner dataset, which was verified in Setlur dataset (n = 455, accuracy = 82.20%) and Clarissa dataset (n = 118, accuracy = 81.36%). Besides, for 495 samples from TCGA, two subtypes classified by 5-ERG-mRPs showed a higher level of significance in various T2E fusion features than subtypes obtained through current fusion prediction tools, such as STAR-Fusion. CONCLUSIONS: Overall, 5-ERG-mRPs can robustly detect T2E fusion in PC at the individual level, which can be used on any gene measurement platform without specific normalization procedures. Hence, 5-ERG-mRPs may serve as an auxiliary tool for PC patient management.


Assuntos
Neoplasias da Próstata , Transcriptoma , Masculino , Humanos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas de Fusão Oncogênica/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , RNA Mensageiro/genética , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Serina Endopeptidases/uso terapêutico
3.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38271483

RESUMO

The advent of single-cell sequencing technologies has revolutionized cell biology studies. However, integrative analyses of diverse single-cell data face serious challenges, including technological noise, sample heterogeneity, and different modalities and species. To address these problems, we propose scCorrector, a variational autoencoder-based model that can integrate single-cell data from different studies and map them into a common space. Specifically, we designed a Study Specific Adaptive Normalization for each study in decoder to implement these features. scCorrector substantially achieves competitive and robust performance compared with state-of-the-art methods and brings novel insights under various circumstances (e.g. various batches, multi-omics, cross-species, and development stages). In addition, the integration of single-cell data and spatial data makes it possible to transfer information between different studies, which greatly expand the narrow range of genes covered by MERFISH technology. In summary, scCorrector can efficiently integrate multi-study single-cell datasets, thereby providing broad opportunities to tackle challenges emerging from noisy resources.

4.
Sci Rep ; 14(1): 2539, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291225

RESUMO

The transcription factor binding site is a deoxyribonucleic acid sequence that binds to transcription factors. Transcription factors are proteins that regulate the transcription gene. Abnormal turnover of transcription factors can lead to uncontrolled cell growth. Therefore, discovering the relationships between transcription factors and deoxyribonucleic acid sequences is an important component of bioinformatics research. Numerous deep learning and machine learning language models have been developed to accomplish these tasks. Our goal in this work is to propose a GMean model for predicting unlabelled deoxyribonucleic acid sequences. The GMean model is a hybrid model with a combination of gated recurrent unit and K-mean clustering. The GMean model is developed in three phases. The labelled and unlabelled data are processed based on k-mers and tokenization. The labelled data is used for training. The unlabelled data are used for testing and prediction. The experimental data consists of deoxyribonucleic acid experimental of GM12878, K562 and HepG2. The experimental results show that GMean is feasible and effective in predicting deoxyribonucleic acid sequences, as the highest accuracy is 91.85% in predicting K562 and HepG2. This is followed by the prediction of the sequence between GM12878 and K562 with an accuracy of 89.13%. The lowest accuracy is the prediction of the sequence between HepG2 and GM12828, which is 88.80%.


Assuntos
Biologia Computacional , Fatores de Transcrição , Sítios de Ligação , Ligação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , DNA/metabolismo
5.
IEEE J Biomed Health Inform ; 28(3): 1742-1751, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38127594

RESUMO

Growing studies reveal that Circular RNAs (circRNAs) are broadly engaged in physiological processes of cell proliferation, differentiation, aging, apoptosis, and are closely associated with the pathogenesis of numerous diseases. Clarification of the correlation among diseases and circRNAs is of great clinical importance to provide new therapeutic strategies for complex diseases. However, previous circRNA-disease association prediction methods rely excessively on the graph network, and the model performance is dramatically reduced when noisy connections occur in the graph structure. To address this problem, this paper proposes an unsupervised deep graph structure learning method GSLCDA to predict potential CDAs. Concretely, we first integrate circRNA and disease multi-source data to constitute the CDA heterogeneous network. Then the network topology is learned using the graph structure, and the original graph is enhanced in an unsupervised manner by maximize the inter information of the learned and original graphs to uncover their essential features. Finally, graph space sensitive k-nearest neighbor (KNN) algorithm is employed to search for latent CDAs. In the benchmark dataset, GSLCDA obtained 92.67% accuracy with 0.9279 AUC. GSLCDA also exhibits exceptional performance on independent datasets. Furthermore, 14, 12 and 14 of the top 16 circRNAs with the most points GSLCDA prediction scores were confirmed in the relevant literature in the breast cancer, colorectal cancer and lung cancer case studies, respectively. Such results demonstrated that GSLCDA can validly reveal underlying CDA and offer new perspectives for the diagnosis and therapy of complex human diseases.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Humanos , Feminino , RNA Circular/genética , Neoplasias da Mama/genética , Algoritmos , Envelhecimento , Biologia Computacional/métodos
6.
IEEE J Biomed Health Inform ; 28(3): 1752-1761, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145538

RESUMO

With a growing body of evidence establishing circular RNAs (circRNAs) are widely exploited in eukaryotic cells and have a significant contribution in the occurrence and development of many complex human diseases. Disease-associated circRNAs can serve as clinical diagnostic biomarkers and therapeutic targets, providing novel ideas for biopharmaceutical research. However, available computation methods for predicting circRNA-disease associations (CDAs) do not sufficiently consider the contextual information of biological network nodes, making their performance limited. In this work, we propose a multi-hop attention graph neural network-based approach MAGCDA to infer potential CDAs. Specifically, we first construct a multi-source attribute heterogeneous network of circRNAs and diseases, then use a multi-hop strategy of graph nodes to deeply aggregate node context information through attention diffusion, thus enhancing topological structure information and mining data hidden features, and finally use random forest to accurately infer potential CDAs. In the four gold standard data sets, MAGCDA achieved prediction accuracy of 92.58%, 91.42%, 83.46% and 91.12%, respectively. MAGCDA has also presented prominent achievements in ablation experiments and in comparisons with other models. Additionally, 18 and 17 potential circRNAs in top 20 predicted scores for MAGCDA prediction scores were confirmed in case studies of the complex diseases breast cancer and Almozheimer's disease, respectively. These results suggest that MAGCDA can be a practical tool to explore potential disease-associated circRNAs and provide a theoretical basis for disease diagnosis and treatment.


Assuntos
Neoplasias da Mama , RNA Circular , Humanos , Feminino , RNA Circular/genética , Redes Neurais de Computação , Biomarcadores , Biologia Computacional/métodos
7.
Front Microbiol ; 14: 1238199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37675425

RESUMO

Introduction: Imbalances in gut microbes have been implied in many human diseases, including colorectal cancer (CRC), inflammatory bowel disease, type 2 diabetes, obesity, autism, and Alzheimer's disease. Compared with other human diseases, CRC is a gastrointestinal malignancy with high mortality and a high probability of metastasis. However, current studies mainly focus on the prediction of colorectal cancer while neglecting the more serious malignancy of metastatic colorectal cancer (mCRC). In addition, high dimensionality and small samples lead to the complexity of gut microbial data, which increases the difficulty of traditional machine learning models. Methods: To address these challenges, we collected and processed 16S rRNA data and calculated abundance data from patients with non-metastatic colorectal cancer (non-mCRC) and mCRC. Different from the traditional health-disease classification strategy, we adopted a novel disease-disease classification strategy and proposed a microbiome-based multi-view convolutional variational information bottleneck (MV-CVIB). Results: The experimental results show that MV-CVIB can effectively predict mCRC. This model can achieve AUC values above 0.9 compared to other state-of-the-art models. Not only that, MV-CVIB also achieved satisfactory predictive performance on multiple published CRC gut microbiome datasets. Discussion: Finally, multiple gut microbiota analyses were used to elucidate communities and differences between mCRC and non-mCRC, and the metastatic properties of CRC were assessed by patient age and microbiota expression.

8.
PLoS Comput Biol ; 19(8): e1011344, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37651321

RESUMO

Accumulating evidence suggests that circRNAs play crucial roles in human diseases. CircRNA-disease association prediction is extremely helpful in understanding pathogenesis, diagnosis, and prevention, as well as identifying relevant biomarkers. During the past few years, a large number of deep learning (DL) based methods have been proposed for predicting circRNA-disease association and achieved impressive prediction performance. However, there are two main drawbacks to these methods. The first is these methods underutilize biometric information in the data. Second, the features extracted by these methods are not outstanding to represent association characteristics between circRNAs and diseases. In this study, we developed a novel deep learning model, named iCircDA-NEAE, to predict circRNA-disease associations. In particular, we use disease semantic similarity, Gaussian interaction profile kernel, circRNA expression profile similarity, and Jaccard similarity simultaneously for the first time, and extract hidden features based on accelerated attribute network embedding (AANE) and dynamic convolutional autoencoder (DCAE). Experimental results on the circR2Disease dataset show that iCircDA-NEAE outperforms other competing methods significantly. Besides, 16 of the top 20 circRNA-disease pairs with the highest prediction scores were validated by relevant literature. Furthermore, we observe that iCircDA-NEAE can effectively predict new potential circRNA-disease associations.


Assuntos
Algoritmos , RNA Circular , Humanos , RNA Circular/genética , Semântica
9.
Artigo em Inglês | MEDLINE | ID: mdl-35389869

RESUMO

DNA-binding proteins (DBPs) play vital roles in the regulation of biological systems. Although there are already many deep learning methods for predicting the sequence specificities of DBPs, they face two challenges as follows. Classic deep learning methods for DBPs prediction usually fail to capture the dependencies between genomic sequences since their commonly used one-hot codes are mutually orthogonal. Besides, these methods usually perform poorly when samples are inadequate. To address these two challenges, we developed a novel language model for mining DBPs using human genomic data and ChIP-seq datasets with decaying learning rates, named DNA Fine-tuned Language Model (DFLM). It can capture the dependencies between genome sequences based on the context of human genomic data and then fine-tune the features of DBPs tasks using different ChIP-seq datasets. First, we compared DFLM with the existing widely used methods on 69 datasets and we achieved excellent performance. Moreover, we conducted comparative experiments on complex DBPs and small datasets. The results show that DFLM still achieved a significant improvement. Finally, through visualization analysis of one-hot encoding and DFLM, we found that one-hot encoding completely cut off the dependencies of DNA sequences themselves, while DFLM using language models can well represent the dependency of DNA sequences. Source code are available at: https://github.com/Deep-Bioinfo/DFLM.


Assuntos
Algoritmos , Proteínas de Ligação a DNA , Humanos , Genômica , DNA/genética , Genoma
10.
IEEE Trans Cybern ; 53(1): 67-75, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34236991

RESUMO

Clinical evidence began to accumulate, suggesting that circRNAs can be novel therapeutic targets for various diseases and play a critical role in human health. However, limited by the complex mechanism of circRNA, it is difficult to quickly and large-scale explore the relationship between disease and circRNA in the wet-lab experiment. In this work, we design a new computational model MGRCDA on account of the metagraph recommendation theory to predict the potential circRNA-disease associations. Specifically, we first regard the circRNA-disease association prediction problem as the system recommendation problem, and design a series of metagraphs according to the heterogeneous biological networks; then extract the semantic information of the disease and the Gaussian interaction profile kernel (GIPK) similarity of circRNA and disease as network attributes; finally, the iterative search of the metagraph recommendation algorithm is used to calculate the scores of the circRNA-disease pair. On the gold standard dataset circR2Disease, MGRCDA achieved a prediction accuracy of 92.49% with an area under the ROC curve of 0.9298, which is significantly higher than other state-of-the-art models. Furthermore, among the top 30 disease-related circRNAs recommended by the model, 25 have been verified by the latest published literature. The experimental results prove that MGRCDA is feasible and efficient, and it can recommend reliable candidates to further wet-lab experiment and reduce the scope of the experiment.


Assuntos
Algoritmos , RNA Circular , Humanos , RNA Circular/genética , Biologia Computacional/métodos
11.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36484687

RESUMO

MOTIVATION: Cell-type-specific gene expression is maintained in large part by transcription factors (TFs) selectively binding to distinct sets of sites in different cell types. Recent research works have provided evidence that such cell-type-specific binding is determined by TF's intrinsic sequence preferences, cooperative interactions with co-factors, cell-type-specific chromatin landscapes and 3D chromatin interactions. However, computational prediction and characterization of cell-type-specific and shared binding sites is rarely studied. RESULTS: In this article, we propose two computational approaches for predicting and characterizing cell-type-specific and shared binding sites by integrating multiple types of features, in which one is based on XGBoost and another is based on convolutional neural network (CNN). To validate the performance of our proposed approaches, ChIP-seq datasets of 10 binding factors were collected from the GM12878 (lymphoblastoid) and K562 (erythroleukemic) human hematopoietic cell lines, each of which was further categorized into cell-type-specific (GM12878- and K562-specific) and shared binding sites. Then, multiple types of features for these binding sites were integrated to train the XGBoost- and CNN-based models. Experimental results show that our proposed approaches significantly outperform other competing methods on three classification tasks. Moreover, we identified independent feature contributions for cell-type-specific and shared sites through SHAP values and explored the ability of the CNN-based model to predict cell-type-specific and shared binding sites by excluding or including DNase signals. Furthermore, we investigated the generalization ability of our proposed approaches to different binding factors in the same cellular environment. AVAILABILITY AND IMPLEMENTATION: The source code is available at: https://github.com/turningpoint1988/CSSBS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Cromatina , Fatores de Transcrição , Humanos , Ligação Proteica/genética , Sítios de Ligação/genética , Fatores de Transcrição/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Biologia Computacional/métodos
12.
IEEE/ACM Trans Comput Biol Bioinform ; 20(5): 2690-2699, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36374878

RESUMO

Transcription factors (TFs) play a part in gene expression. TFs can form complex gene expression regulation system by combining with DNA. Thereby, identifying the binding regions has become an indispensable step for understanding the regulatory mechanism of gene expression. Due to the great achievements of applying deep learning (DL) to computer vision and language processing in recent years, many scholars are inspired to use these methods to predict TF binding sites (TFBSs), achieving extraordinary results. However, these methods mainly focus on whether DNA sequences include TFBSs. In this paper, we propose a fully convolutional network (FCN) coupled with refinement residual block (RRB) and global average pooling layer (GAPL), namely FCNARRB. Our model could classify binding sequences at nucleotide level by outputting dense label for input data. Experimental results on human ChIP-seq datasets show that the RRB and GAPL structures are very useful for improving model performance. Adding GAPL improves the performance by 9.32% and 7.61% in terms of IoU (Intersection of Union) and PRAUC (Area Under Curve of Precision and Recall), and adding RRB improves the performance by 7.40% and 4.64%, respectively. In addition, we find that conservation information can help locate TFBSs.

13.
PLoS Comput Biol ; 18(10): e1010572, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36206320

RESUMO

In recent years, major advances have been made in various chromosome conformation capture technologies to further satisfy the needs of researchers for high-quality, high-resolution contact interactions. Discriminating the loops from genome-wide contact interactions is crucial for dissecting three-dimensional(3D) genome structure and function. Here, we present a deep learning method to predict genome-wide chromatin loops, called DLoopCaller, by combining accessible chromatin landscapes and raw Hi-C contact maps. Some available orthogonal data ChIA-PET/HiChIP and Capture Hi-C were used to generate positive samples with a wider contact matrix which provides the possibility to find more potential genome-wide chromatin loops. The experimental results demonstrate that DLoopCaller effectively improves the accuracy of predicting genome-wide chromatin loops compared to the state-of-the-art method Peakachu. Moreover, compared to two of most popular loop callers, such as HiCCUPS and Fit-Hi-C, DLoopCaller identifies some unique interactions. We conclude that a combination of chromatin landscapes on the one-dimensional genome contributes to understanding the 3D genome organization, and the identified chromatin loops reveal cell-type specificity and transcription factor motif co-enrichment across different cell lines and species.


Assuntos
Cromatina , Aprendizado Profundo , Cromatina/genética , Genoma/genética , Cromossomos , Fatores de Transcrição/genética
14.
IEEE J Biomed Health Inform ; 26(10): 5075-5084, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35976848

RESUMO

Increasing evidence suggest that circRNA, as one of the most promising emerging biomarkers, has a very close relationship with diseases. Exploring the relationship between circRNA and diseases can provide novel perspective for diseases diagnosis and pathogenesis. The existing circRNA-disease association (CDA) prediction models, however, generally treat the data attributes equally, do not pay special attention to the attributes with more significant influence, and do not make full use of the correlation and symbiosis between attributes to dig into the latent semantic information of the data. Therefore, in response to the above problems, this paper proposes a natural semantic enhancement method NSECDA to predict CDA. In practical terms, we first recognize the circRNA sequence as a biological language, and analyze its natural semantic properties through the natural language understanding theory; then integrate it with disease attributes, circRNA and disease Gaussian Interaction Profile (GIP) kernel attributes, and use Graph Attention Network (GAT) to focus on the influential attributes, so as to mine the deeply hidden features; finally, the Rotation Forest (RoF) classifier was used to accurately determine CDA. In the gold standard data set CircR2Disease, NSECDA achieved 92.49% accuracy with 0.9225 AUC score. In comparison with the non-natural semantic enhancement model and other classifier models, NSECDA also shows competitive performance. Additionally, 25 of the CDA pairs with unknown associations in the top 30 prediction scores of NSECDA have been proven by newly reported studies. These achievements suggest that NSECDA is an effective model to predict CDA, which can provide credible candidate for subsequent wet experiments, thus significantly reducing the scope of investigations.


Assuntos
RNA Circular , Semântica , Algoritmos , Biologia Computacional/métodos , Humanos , RNA Circular/genética
15.
PLoS Comput Biol ; 18(3): e1009941, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35263332

RESUMO

Transcription factors (TFs) play an important role in regulating gene expression, thus the identification of the sites bound by them has become a fundamental step for molecular and cellular biology. In this paper, we developed a deep learning framework leveraging existing fully convolutional neural networks (FCN) to predict TF-DNA binding signals at the base-resolution level (named as FCNsignal). The proposed FCNsignal can simultaneously achieve the following tasks: (i) modeling the base-resolution signals of binding regions; (ii) discriminating binding or non-binding regions; (iii) locating TF-DNA binding regions; (iv) predicting binding motifs. Besides, FCNsignal can also be used to predict opening regions across the whole genome. The experimental results on 53 TF ChIP-seq datasets and 6 chromatin accessibility ATAC-seq datasets show that our proposed framework outperforms some existing state-of-the-art methods. In addition, we explored to use the trained FCNsignal to locate all potential TF-DNA binding regions on a whole chromosome and predict DNA sequences of arbitrary length, and the results show that our framework can find most of the known binding regions and accept sequences of arbitrary length. Furthermore, we demonstrated the potential ability of our framework in discovering causal disease-associated single-nucleotide polymorphisms (SNPs) through a series of experiments.


Assuntos
Aprendizado Profundo , Sítios de Ligação , Sequenciamento de Cromatina por Imunoprecipitação , Ligação Proteica , Fatores de Transcrição/metabolismo
16.
IEEE/ACM Trans Comput Biol Bioinform ; 19(6): 3144-3153, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34882561

RESUMO

Discovery of transcription factor binding sites (TFBSs) is of primary importance for understanding the underlying binding mechanic and gene regulation process. Growing evidence indicates that apart from the primary DNA sequences, DNA shape landscape has a significant influence on transcription factor binding preference. To effectively model the co-influence of sequence and shape features, we emphasize the importance of position information of sequence motif and shape pattern. In this paper, we propose a novel deep learning-based architecture, named hybridShape eDeepCNN, for TFBS prediction which integrates DNA sequence and shape information in a spatially aligned manner. Our model utilizes the power of the multi-layer convolutional neural network and constructs an independent subnetwork to adapt for the distinct data distribution of heterogeneous features. Besides, we explore the usage of continuous embedding vectors as the representation of DNA sequences. Based on the experiments on 20 in-vitro datasets derived from universal protein binding microarrays (uPBMs), we demonstrate the superiority of our proposed method and validate the underlying design logic.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Ligação Proteica , Fatores de Transcrição/metabolismo , Sítios de Ligação/genética , Proteínas de Ligação a DNA/metabolismo , DNA/química
17.
IEEE/ACM Trans Comput Biol Bioinform ; 19(6): 3663-3672, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34699364

RESUMO

The abuse of traditional antibiotics has led to an increase in the resistance of bacteria and viruses. Similar to the function of antibacterial peptides, bacteriocins are more common as a kind of peptides produced by bacteria that have bactericidal or bacterial effects. More importantly, the marine environment is one of the most abundant resources for extracting marine microbial bacteriocins (MMBs). Identifying bacteriocins from marine microorganisms is a common goal for the development of new drugs. Effective use of MMBs will greatly alleviate the current antibiotic abuse problem. In this work, deep learning is used to identify meaningful MMBs. We propose a random multi-scale convolutional neural network method. In the scale setting, we set a random model to update the scale value randomly. The scale selection method can reduce the contingency caused by artificial setting under certain conditions, thereby making the method more extensive. The results show that the classification performance of the proposed method is better than the state-of-the-art classification methods. In addition, some potential MMBs are predicted, and some different sequence analyses are performed on these candidates. It is worth mentioning that after sequence analysis, the HNH endonucleases of different marine bacteria are considered as potential bacteriocins.


Assuntos
Bactérias , Bacteriocinas , Descoberta de Drogas , Redes Neurais de Computação , Antibacterianos/química , Bactérias/química , Bacteriocinas/química , Bacteriocinas/classificação , Peptídeos , Descoberta de Drogas/métodos , Organismos Aquáticos/química , Análise de Sequência de DNA
18.
Artigo em Inglês | MEDLINE | ID: mdl-32750884

RESUMO

Attention mechanism has the ability to find important information in the sequence. The regions of the RNA sequence that can bind to proteins are more important than those that cannot bind to proteins. Neither conventional methods nor deep learning-based methods, they are not good at learning this information. In this study, LSTM is used to extract the correlation features between different sites in RNA sequence. We also use attention mechanism to evaluate the importance of different sites in RNA sequence. We get the optimal combination of k-mer length, k-mer stride window, k-mer sentence length, k-mer sentence stride window, and optimization function through hyper-parm experiments. The results show that the performance of our method is better than other methods. We tested the effects of changes in k-mer vector length on model performance. We show model performance changes under various k-mer related parameter settings. Furthermore, we investigate the effect of attention mechanism and RNA structure data on model performance.


Assuntos
Aprendizado Profundo , Ligação Proteica , Proteínas/química , Proteínas/genética , RNA/genética
19.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34471921

RESUMO

Graph is a natural data structure for describing complex systems, which contains a set of objects and relationships. Ubiquitous real-life biomedical problems can be modeled as graph analytics tasks. Machine learning, especially deep learning, succeeds in vast bioinformatics scenarios with data represented in Euclidean domain. However, rich relational information between biological elements is retained in the non-Euclidean biomedical graphs, which is not learning friendly to classic machine learning methods. Graph representation learning aims to embed graph into a low-dimensional space while preserving graph topology and node properties. It bridges biomedical graphs and modern machine learning methods and has recently raised widespread interest in both machine learning and bioinformatics communities. In this work, we summarize the advances of graph representation learning and its representative applications in bioinformatics. To provide a comprehensive and structured analysis and perspective, we first categorize and analyze both graph embedding methods (homogeneous graph embedding, heterogeneous graph embedding, attribute graph embedding) and graph neural networks. Furthermore, we summarize their representative applications from molecular level to genomics, pharmaceutical and healthcare systems level. Moreover, we provide open resource platforms and libraries for implementing these graph representation learning methods and discuss the challenges and opportunities of graph representation learning in bioinformatics. This work provides a comprehensive survey of emerging graph representation learning algorithms and their applications in bioinformatics. It is anticipated that it could bring valuable insights for researchers to contribute their knowledge to graph representation learning and future-oriented bioinformatics studies.


Assuntos
Biologia Computacional , Redes Neurais de Computação , Algoritmos , Biologia Computacional/métodos , Conhecimento , Aprendizado de Máquina
20.
Mol Ther Nucleic Acids ; 24: 154-163, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33767912

RESUMO

The study of transcriptional regulation is still difficult yet fundamental in molecular biology research. Recent research has shown that the double helix structure of nucleotides plays an important role in improving the accuracy and interpretability of transcription factor binding sites (TFBSs). Although several computational methods have been designed to take both DNA sequence and DNA shape features into consideration simultaneously, how to design an efficient model is still an intractable topic. In this paper, we proposed a hybrid convolutional recurrent neural network (CNN/RNN) architecture, CRPTS, to predict TFBSs by combining DNA sequence and DNA shape features. The novelty of our proposed method relies on three critical aspects: (1) the application of a shared hybrid CNN and RNN has the ability to efficiently extract features from large-scale genomic sequences obtained by high-throughput technology; (2) the common patterns were found from DNA sequences and their corresponding DNA shape features; (3) our proposed CRPTS can capture local structural information of DNA sequences without completely relying on DNA shape data. A series of comprehensive experiments on 66 in vitro datasets derived from universal protein binding microarrays (uPBMs) shows that our proposed method CRPTS obviously outperforms the state-of-the-art methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...